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Abstract

Motivation: Reconstructing clonal lineage trees (“tumor phylogenetics”) has become a core tool of cancer genomics.
Earlier approaches based on bulk DNA sequencing (DNA-seq) have largely given way to single-cell DNA-seq (scDNA-seq),
which offers far greater resolution for clonal substructure. Available data has lagged behind computational theory, though.
While single-cell RNA-seq (scRNA-seq) has become widely available, scDNA-seq is still sufficiently costly and technically
challenging to preclude routine use on large cohorts. This forces difficult tradeoffs between the limited genome coverage
of scRNA-seq, limited availability of scDNA-seq, and limited clonal resolution of bulk DNA-seq. These limitations are
especially problematic for studying structural variations and focal copy number variations that are crucial to cancer
progression but difficult to observe in RNA-seq.
Results: We develop a method, TUSV-int, combining advantages of these various genomic technologies by integrating
bulk DNA-seq and scRNA-seq data into a single deconvolution and phylogenetic inference computation while allowing
for single nucleotide variant (SNV), copy number alteration (CNA) and structural variant (SV) data. We accomplish
this by using integer linear programming (ILP) to deconvolve heterogeneous variant types and resolve them into a clonal
lineage tree. We demonstrate improved deconvolution performance over comparative methods lacking scRNA-seq data or
using more limited variant types. We further demonstrate the power of the method to better resolve clonal structure and
mutational histories through application to a previously published DNA-seq/scRNA-seq breast cancer data set.
Availability: The source code for TUSV-int is available at https://github.com/CMUSchwartzLab/TUSV-INT.git
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Introduction

Cancer develops through an evolutionary process by which

an initially healthy cell population successively accumulates

mutations, generating genetic diversity that in turn creates

opportunities for selection for more aggressive cell populations

(clones) over the course of time [31]. While most such mutations

are likely selectively neutral [36], chance deleterious mutations

can lead cancers to select for phenotypic changes promoting

tumor growth and progression [15]. Mutations causing pathway

dysregulation might act through changes in gene copy number,

molecular functions, and gene expressions, among other

mechanisms. This resulting process of clonal evolution, together

with the response it provokes in the tumor microenvironment,

ultimately lead to the phenotype of tumor growth that defines

cancer. Unraveling the enormous complexity of the process,

though, has been the work of many years of effort into

gathering diverse data sources on tumor genetics, function, and

morphology and resolving their data into into coherent models

of the process of tumor evolution and its relationship to disease

progression [28].

Computational tools for reconstructing the process of clonal

evolution in cancers from genomic data sources (“tumor

phylogenetics”) have become a crucial part of cancer research,

with their development emerging as its own vibrant subfield

of research driven by and driving biotechnology development

for profiling cancer progression [34] as well as helping

to spur extensive study of somatic evolution beyond the

cancer context [3]. The earliest methods for clonal lineage

reconstruction relied on methods that predate the genomic

era [25, 32]. Tumor phylogenetics only came into more

widespread use as newer genomic technologies began to make

cancer genetic variation data available at scale. The first

widely used tools were designed to take advantage of bulk

DNAseq (e.g., [4, 35]). The advent of scDNA-seq (scDNA-

seq) for cancer studies [30] revolutionized clonal phylogenetics,

with many methods today designed to us scDNA-seq data
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(e.g., [7, 33, 18]). However, scDNA-seq remains comparatively

costly and technically challenging and so is still not widely used

for large-scale cancer genomic studies or clinical practice [8].

Single-cell RNA-seq (scRNA-seq) is far more accessible and

cost-effective [16], leading to efforts at scRNA-seq-based

tumor phylogenetics [17, 20, 29], although such methods are

challenged by the limited coverage of the genome they offer,

poor resolution for fine-scale copy number changes, and limited

ability to detect structural variations in particular.

Multiomic studies offer a potential path for leveraging

advantages of distinct technology platforms. Multiomic

methods have a long history in tumor phylogeny studies,

including, for example, methods for combining bulk and

scRNA-seq [22], bulk and scDNA-seq [26, 23], bulk DNA-

seq and pregenomic fluorescent in situ hybridization (FISH)

data [21], scDNA-seq and FISH [10], and scDNA-seq and

scRNA-seq [6]. Particular value may be found in taking

advantage of the comprehensive genomic coverage offered by

bulk DNA-seq and the fine clonal resolution offered by scRNA-

seq, both of which are now routinely available in low-cost

commercial platforms, as recently adopted by some tumor

phylogeny efforts [17, 40, 27]. Among these methods, PhylEx

[17] and Canopy2 [40] use Bayesian methods to reconstruct

tumor phylogenies from SNVs while Cardelino [27] is primarily

an scRNA-seq method but can optionally use bulk sequence if

provided a clonal guide tree. The benefits of this combination of

technologies should be particularly pronounced as we move to

develop more comprehensive models of how different variant

types collectively contribute to tumor evolution, given the

severe limitations of RNA-seq alone for profiling SNVs, CNAs,

or SVs comprehensively. Recent work [11, 1] has shown the

importance of looking at these classes of variants together,

given their complementary value for accurately resolving clonal

evolution and our growing appreciation for how they can each

act in parallel in causing phenotypic changes that shape clonal

evolution pathways [1, 39].

In the present work, we develop TUSV-int, a platform for

clonal evolution studies integrating bulk DNA-seq and scRNA-

seq to produce clonal evolution models that are unprecendented

in their comprehensive accounting for fine clonal structure,

genomic coverage, and diverse variant types (SNV, CNA, and

SV). The work uses a general integer linear programming (ILP)

framework of clonal lineage reconstruction in the presence of

SVs [5] that we have previously adapted to provide similarly

comprehensive variant coverage from bulk DNA-seq [11] and

scDNA-seq [1] data. We validate TUSV-int in comparison

to published alternative approaches, showing the value of

considering multiple variant types and of combining bulk DNA-

seq and sc-RNAseq in resolving clonal evolution accurately and

comprehensively. We further demonstrate with application to a

previously published DNA/RNA breast cancer data set [2] that

TUSV-int is practical on real data and can yield improvements

in clonal deconvolution and lineage reconstruction capable of

driving novel biological discovery.

Methods

We aim to reconstruct tumor clonal evolutionary histories, infer

the SNV, SV, and CNA profiles of individual tumor clones, and

determine their mixture fractions in samples of bulk DNA-seq

using scRNA-seq data as a guide. We follow prior work of the

original TUSV method [5] and variants [11, 1] in representing

these variants for the formal problem statement. CNAs are

represented as copy numbers for genomic regions, discretized

into disjoint segments (bins). SVs are represented as pairs of

genomic breakpoints that are adjacent in the cancer genome but

non-adjacent in the reference genome. SNVs are represented by

a single position in the genome. Allele fractions at SNV and

SV positions are calculated as the ratio of reads supporting

the alternate allele to those supporting the reference allele. We

elaborate on these representations in defining problem variables

in the following sections.

Problem Statement
TUSV-int takes processed variant calls as input for both bulk

DNA-seq (which may be WGS, WES, or targeted sequence

data) and scRNA-seq. In bulk DNA-seq, we represent SVs

with segmental mean copy numbers of paired breakpoint ends,

CNAs with allele specific mean copy number for a set of

discrete genomic segments, and SNVs with estimated mean

copy numbers at the SNV positions. In scRNA-seq data, we

represent CNAs with allele-specific mean copy numbers of

genomic segments, which can be derived from existing copy

number callers, such as Numbat [13] or SIGNALS [12]. Assume

we are given: 1) m samples of bulk DNA-seq data covering

r genomic segments and containing l SV breakpoints and g

SNVs and 2) scRNA-seq data covering the same r genomic

segments and corresponding to n tumor clones. Note that for

computational efficiency, the variants used as input may be

subsampled from the full variant set, a strategy for which we

provide a more detailed quantitative justification in our prior

work [1]. Given these inputs, we first construct an m×(l+g+2r)

clonal variant matrix, F , from the bulk DNA-seq data. We then

build an n × 2r clonal copy number matrix CRNA, from the

scRNA-seq data. Additionally, we build an l × r breakpoint

to segment mapping matrix, Q, identifying the segment in

which each breakpoint end is located and an l × l breakpoint

pair mapping matrix G identifying which breakpoints ends are

paired to one another. The notations are described in Table

1 in more detail. Given the F,CRNA, Q, and G matrices, our

goal is to estimate an m× n clonal mixture fraction matrix U ,

n×(l+g+2r) deconvolved clonal copy number matrix C, n×2r

estimated RNA copy number matrix C′, and n × n single-cell

RNA seq clone to bulk clone mapping matrix M . We do that

by solving for a constrained optimization problem minimizing

the following objective function:

min
U,C,M

∣∣F − UC
∣∣ + ∣∣C′ − MC

RNA∣∣ + λ1R + λ2S (1)

∣∣F−UC
∣∣ provides a measure of the quality of the deconvolution

of the bulk data.
∣∣C′ − MCRNA

∣∣ provides a measure

of consistency between the copy number estimates from

deconvolved DNA-seq versus scRNA-seq. R is a regularization

terms used to penalize for L1 cost of copy number distances

along edges of a clonal phylogeny built from the inferred

variants, used to bias the optimization towards a clonal

deconvolution that yields a plausible evolutionary tree as

assessed by an approximate minimum evolution cost. S is a

measure of consistency between CNA and SV copy numbers.

These terms and the constraint sets by which they are defined

are described in more detail below.

Algorithm
We formalize TUSV-int as a constrained optimization problem

and solve for it with a coordinate descent algorithm, iterating
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Table 1. Key parameters and variables needed for TUSV-int

Notation Interpretation Type

n The number of clones User defined

m The number of samples Data derived

l The number of SV breakpoints Data derived

g The number of SNVs Data derived

r The number of DNA copy number segments Data derived

F ∈ Rm×(l+g+2r)
≥0 Fi,j : Average copy number of variant j in sample i Constant

Q ∈ {0, 1}(l+g)×r Qi,j = 1 iff breakpoint or SNV i is in segment j j Constant

G ∈ {0, 1}l×l Gi,j = 1 iff i and j are paired breakpoints, deriving from the same SV Constant

CRNA ∈ Zn×(2r)
≥0 CRNA

i,j : Clonal copy number of CNA j in clone i Constant

U ∈ Rm×n
≥0 Ui,j : Fraction of clone j in sample i Variable

C ∈ Zn×(l+g+2r)
≥0 Ci,j : Clonal copy number of variant j in clone i Variable

M ∈ {0, 1}n×n Mi,j = 1 iff clone i in the phylogeny represents RNA clone j Variable

E ∈ {0, 1}n×n Ei,j = 1 iff there is a directed edge from clone i to clone j Variable

A ∈ {0, 1}n×n Ai,j = 1 iff clone i is an ancestor of clone j Variable

W ∈ {0, 1}n×n×(l+g) Wi,j,k = 1 iff breakpoint or SNV k is mapped on the edge from clone i to clone j Variable

between subproblems of the full optimization each of which we

solve using integer linear programming (ILP). This is based

on a strategy first developed for the original TUSV [5] and

elaborated on in the more general TUSV-ext [11] for solving

for tumor phylogenies integrating SNVs, CNAs and SVs from

bulk-DNA sequencing data alone. The present work extends

the TUSV-ext algorithm to accommodate the additional inputs,

outputs, and constraints created by introducing scRNA-seq

data.

We use coordinate descent to address the nonlinearity of

our objective function in estimating the clonal mixture fraction

matrix U and clonal copy number matrix C. The algorithm

iteratively optimizes independently for U and C, starting with

a random initialization of U . The variant copy number matrix C

is estimated in two stages: 1) inference of the segmental CNAs

from single-cell RNA sequencing data by estimating M and

C′ and 2) estimation of the clonal SNVs and SVs constrained

by the ILP formulation. We describe these in more detail in

the following sections, focusing particularly on the extensions

beyond TUSV-ext. We refer readers to the prior works [5, 11]

for portions of the optimization that are largely unchanged,

except where needed for clarity of exposition.

Estimating clonal mixture fraction matrix U

We define a set of ILP constraints to estimate U given F and

C. The objective function is set to minimize the L1 norm of

|F −UC|. Additionally, for each sample, we impose constraints

so that the mixture fractions sum to 1 (Eqn. 2).

n∑
j=1

Ui,j = 1 ∀ i ∈ {1, . . . ,m} (2)

Estimating M and C′

Once U is estimated, we estimate the n × n bulk DNA-seq-

to-scRNA-seq clone mapping matrix M and n × 2r estimated

RNA copy number matrix C′ by minimizing the L1 norm of

|C′ − MCRNA|. We impose constraints on M to ensure that

each DNA clone corresponds to exactly one RNA clone (Eqn. 3,

4, 5).

Mi,j ∈ {0, 1} ∀ i, j ∈ {1, . . . , n} (3)

n∑
j=1

Mi,j = 1 ∀ i ∈ {1, . . . , n} (4)

n∑
i=1

Mi,j = 1 ∀ j ∈ {1, . . . , n} (5)

(6)

We then define the RNA copy number distance portion of the

objective in Eqn. 1 using L1 distance as the following equations.

C∆
i,j ≥ C

′
i,j −

n∑
k=1

Mi,k.C
RNA
k,j (7)

C∆
i,j ≥ −C

′
i,j +

n∑
k=1

Mi,k.C
RNA
k,j (8)

|C′ − MC
RNA| =

n∑
i=1

2r∑
j=1

C∆
i,j (9)

Simultaneously, we set the estimated C′ as the segmental CNA

values of C (Eqn. 10).

Ci,l+g+j = C
′
i,j∀ i ∈ {1, · · · , n}, j ∈ {1, · · · , 2r} (10)

Edge and ancestry constraints

We model the underlying evolutionary history associated with

the variants as a rooted directed binary phylogenetic tree T
with n nodes corresponding to n clones, represented by a binary

adjacency matrix E, where ei,j = 1 if clone i is the parent of

clone j for i, j ∈ {1, · · · , n}. To ensure that E represents a

valid tree structure, we designate the first n′ = (n−1)
2 nodes
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to represent the leaves of the tree, n′ + 1 through n − 1 to

represent the internal nodes, and node n to represent the root.

n′ represents the number of internal nodes in T . We then

impose the following constraints on the E matrix:

The root has no incoming edge and the leaves have no

outgoing edge -

Ei,n = 0 ∀ i ∈ {1, · · · , n} (11)

Ei,j = 0 ∀ i ∈
{
0, · · · , n′}

, j ∈ {1, · · · , n} (12)

Additionally, following TUSV-ext [11], we define an ancestor

matrix A ∈ {0, 1}n×n. Ai,j = 1 if clone i is an ancestor of

clone j. We define the following two constraints to ensure that

a node’s parent is its ancestor and a child node will carry all of

its parent’s ancestors -

Ai,j ≥ Ei,j ∀ i, j ∈ {1, · · · , n} (13)

Ak,j ≥ Ak,i + Ei,j − 1 ∀ i, j ∈ {0, · · · , n}, k ∈ {1, · · · , n} \ {i}
(14)

Ak,j ≥ Ak,i − Ei,j + 1 ∀ i, j ∈ {0, · · · , n}, k ∈ {1, · · · , n} \ {i}
(15)

Copy number constraints

We define similar constraints to TUSV-ext [11] to ensure a tree

structure on our estimated variant copy number matrix C. We

assume that the root is a normal clone and therefore has no

SNV/SV mutations, as well as normal diploid copy number at

each genomic segment.

Cn,j = 0 ∀ j ∈ {1, · · · , (l + g)} (16)

Cn,j = 1 ∀ j ∈ {(l + g + 1), · · · , (l + g + 2r)} (17)

For algorithmic tractability, we constrain the maximum

copy number to be a user-specifiable parameter cmax.

Ci,j ≤ cmax ∀ i ∈ {1, · · · , n}, j ∈ {(l + g + 1), · · · , (l + g + 2r)}
(18)

Additional constraints define the phylogenetic cost R as the

sum of L1 distances of copy number differences across the edges

of the tree. These are defined as in our prior work [11] and so

are not reproduced here.

Dollo phylogeny on breakpoints and SNVs and breakpoint
consistency

We apply constraints for the loss-supported Dollo phylogeny

model, where a mutation can be gained only once, but lost

multiple times. However, to favor consistency between CNA

and SNV/SV data, we assume that SNV and SV losses are

coupled with a loss of their corresponding genomic segments.

Similarly, SNV and SV amplifications are constrained by their

corresponding segmental amplifications, as described in TUSV-

ext [11]. Additionally, we assign each breakpoint and SNV to

an allele. This is achieved by introducing a binary matrix D ∈
0, 1(l+g), where Db = 1 if and only if breakpoint or SNV b

belongs to the first allele, and 0 otherwise.

Since each breakpoint belongs to exactly one segment, a

breakpoint copy number should not exceed the copy number of

its corresponding segment. For a breakpoint b, we impose the

following constraints:

Ci,b ≤
r∑

s=1

Qb,sCi,l+g+s + (1 − Db)cmax

Ci,b ≤
r∑

s=1

Qb,sCi,l+g+r+s + Dbcmax

∀ i ∈ {1, · · · , n}, b ∈ {1, · · · , l} (19)

Finally, our second regularization term S in the objective

function (Eqn. 1) enforces a relationship between the CNA

segmental copy numbers and the breakpoint allele copy

numbers. Since breakpoint copy numbers can be at most as

large as the segmental copy numbers, the mixture copy number

at the breakpoint position should also be at most the mixture

segmental copy numbers. For a breakpoint b in sample i, we

denote the ratio of the mixture copy numbers at the breakpoint

or SNV position and the corresponding segment as πi,b.

πi,b =
Fi,b

Fi,l+g+b + Fi,l+g+r+b

(20)

This ratio represents the sum of the amplification or deletion

events of the mutation-containing allelle in comparison to the

genomic segment as a whole. By minimizing the difference

between the observed and estimated ratios, we align the

estimated data with the observed mixture fractions. Following

TUSV-ext [11], we include this minimization as a regularization

term in the objective function to determine S.

Choice of the regularization parameters
We set the regularization parameters to scale R and S so that

they are comparable to the larger of the first two terms in the

objective function. Specifically, we choose

λ1 =
1

2

(l + g + 2r)m

2rN
,

which is the ratio of the size of the first term to R, and

λ2 =
1

2

l + g + 2r

l + g
,

as in TUSV-ext [11], based on empirical observation that these

formulas perform well in practice in the original TUSV and that

solutions are minimally sensitive in the vicinity of these values.

Availability
TUSV-int is implemented in Python 2 and utilizes the licensed

Gurobi optimizer for ILP solution. The code is available at

https://github.com/CMUSchwartzLab/TUSV-INT.git.

Results

We first validated the accuracy and robustness of TUSV-

int using simulated data and assessed its performance relative

to TUSV-ext and Canopy2 [40]. While there are many tools

available for tumor phylogenetics, there are no accepted

standards for their specification and differences in inputs

and outputs render direct head-to-head comparisons difficult.

We compare to TUSV-ext to provide a direct assessment of

the value of scRNA-seq in deconvolving bulk DNA-seq. A

so-far unique feature of our TUSV-family methods is their
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simultaneous use of SNV, CNA, and SV data, and we therefore

use Canopy2 to assess the comparative advantage TUSV-

int gets from including additional variant types relative to a

leading tool also using bulk DNA-seq and scRNA-seq.

Additionally, we evaluated TUSV-int’s effectiveness on real

cancer patient samples. A full direct comparison of TUSV-

int with other existing methods is again not feasible, as none of

them utilize single-cell RNA sequences for clonal deconvolution

from bulk DNA sequencing data using all of the variant types

TUSV-int can access. We therefore again compare it with

TUSV-ext, which reconstructs tumor phylogenies with bulk

DNA sequences only with all of the same variant types, to

assess what specifically we gain by adding scRNA-seq to the

analysis.

Canopy2 [40] reconstructs tumor phylogenies from bulk

DNA-seq and scRNA-seq based only on SNVs. While Canopy2

utilizes reference and alternate reads from bulk DNA-seq and

scRNA-seq data, we use the copy numbers from scRNA-seq to

guide our method. Canopy2 relies on assumptions of different

mutation “activation” and “deactivation” rates in relating

scRNA-seq data to clonal mixture fractions and mutation

frequencies. In contrast, we do not explicitly model these rates.

Instead, to ensure a fair comparison, we generate scRNA-

seq reference and alternate read counts for Canopy2 assuming

uniform activation and deactivation rates across all mutations

and no sequencing errors. We achieve this by keeping the

scRNA-seq reference and alternate read counts consistent with

the clonal B-allele frequencies (BAFs) observed in the bulk

mixture. For this purpose, we first extract clonal BAFs from

the bulk mixture to represent the proportion of alternate allele

reads for each clone. Next, for each single cell, we simulate

reference and alternate read counts at each site by scaling the

total read depth to 120x. These comparisons are meant only

to assess the value of the unique combination of data sources

(sequence types and variant types) used by TUSV-int and so we

do not explore other scenarios where the variant types assumed

by TUSV-int are not available.

Evaluation with simulated data
To evaluate the performance of TUSV-int, we simulated

bulk WGS data with SVs, SNVs, and CNAs based on

known ground-truth tumor phylogenies, mutation rates, clonal

populations, and their frequencies. Each simulation represented

subclones from a single patient with two samples, using

genomic segments from chromosomes 1 and 2. We began by

assigning random clonal frequencies to the subclones. We then

introduce genetic alterations, where we generate SNVs at

uniformly random positions, and SVs with lengths drawn from a

Poisson distribution with a mean of 5,745,000 bp, corresponding

to the average SV length observed in the TCGA-BRCA

cohort [5]. CNAs are generated using a relative probability

distribution of 2:1:2:1 for amplifications, inversions, deletions,

and translocations, respectively. To model sequencing errors,

we generate segment-specific read counts using a Poisson

distribution with a mean depth of 50. These read counts

are used as the trial numbers for a binomial density that

generates variant-associated read counts based on variant allele

frequencies (VAFs). For each variant, we compute theoretical

bulk DNA-seq copy numbers as a weighted sum across subclones

based on their respective clonal frequencies. Using these copy

numbers, we calculate variant allele frequencies (VAFs) for

SNVs and breakpoints, as well as BAFs for CNAs. For

transcriptomic simulations, we generate transcript counts using

a Poisson density with a mean of 50 for at least 3 and at most

6 genes per genomic segment from the bulk DNA sequences

for each clone. These counts are averaged and normalized for

allele-specific single-cell RNA sequencing segment-wise CNA

profiles.

We ran TUSV-int with the following parameter sets — (1)

varying numbers of clones, n ∈ {3, 5, 7, 9} and (2) varying

numbers of SNV mutations, g ∈ {25, 50, 100} — with each

scenario having 3 iterations, 3 random restarts, 5000 seconds

maximum compute time per iteration, 80 SVs, 40 SNVs

(with the exception of 20 SNV for g = 25) and with the

corresponding genomic segments for CNAs. Figure 1 shows the

root mean square error (RMSE) of the true versus estimated

clonal fraction matrices in these simulation settings.

In all cases, TUSV-int outperformed our previous method,

TUSV-ext, which relies solely on bulk DNA-seq. We observed

a decrease in accuracy for TUSV-int as the number of clones

increases (Figure 1 (a), (d), (e)), indicating that deconvolution

becomes harder for a larger dataset. Inference of clonal SVs

suffers more from increasing clone numbers than SNVs. Clonal

frequencies show a smaller loss in quality with increasing

numbers of clones than variant inferences. This is in contrast

to TUSV-ext, which shows less sensitivity to clone numbers,

although still worse performance than TUSV-int even under the

most favorable conditions. This may correspond to the greater

difficulty of accurately mapping scRNA-seq data to distinct

DNA-seq clones as the clone number increases.

Increasing numbers of variants leads to less consistent trends

between the two methods (Figure 1 (b), (e), (h)). Both

methods show some loss of accuracy in SVs with increasing

variant numbers, although more stable results for SNVs. Clonal

frequencies are essentially stable for TUSV-int with increasing

numbers of variants. TUSV-int remains consistently the better

performer and the performance gap between the two methods

is relatively stable across changes in variant numbers for the

most part.

Increasing number of samples (Figure 1 (c), (f), (i))

generally led to improved solution quality by all measures,

with the exception of the outlier of clonal frequency accuracy

degrading for ten samples. We would generally expect more

samples to lead to more effective deconvolution despite

potentially increasing the size and difficulty of the optimization

problem. There is a slight increase in separation between the

two methods within increasing sample numbers, although not

clearly distinguishable from chance. TUSV-ext did not yield

results for ten samples within the allotted compute time. While

improved runtime was not the goal of TUSV-int, the results

may indicate an unanticipated value of scRNA-seq in more

tightly constraining the problem and pruning the search space,

thus accelerating ILP-type optimization.

We also evaluated Canopy2’s [40] performance on our

simulated datasets, comparing to TUSV-int and TUSV-ext

with respect to clonal frequency inference and SNV placement

onto clones. For each simulation instance, we provided Canopy2

with the true number of clones and ran it using its default

parameters. Fig. 1 shows Canopy2’s performance in green. Since

Canopy2 does not make use of SVs, there are no Canopy2

results for Fig. 1(d,e,f). Root mean squared errors (RMSE) for

clonal frequency inference and SNV placement with Canopy2

are generally comparable to those of TUSV-ext, with both

notably worse than TUSV-int. The results confirm observations

from prior TUSV variants that the addition of SV data leads

to improved accuracy by other measures than just SVs, as

SVs provide complementary information to other variant types
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Fig. 1. Results on simulation with different number of clones, samples and mutations. (a) - (c) shows mean squared error of the true vs estimated clonal

mixture fractions (U) for TUSV-int , TUSV-ext and Canopy2. (d) - (f) shows the mean squared error of the estimated SVs for TUSV-int and TUSV-ext.

(g) - (h) shows the mean squared error of the estimated SNVs for TUSV-int , TUSV-ext and Canopy2. We ran TUSV-int and TUSV-ext with m =

5000, t = 3, r = 3, sv ub = 80 and C = 120 (except for 25 SNVs, where C = 100). The solid lines represent the means of the simulation instances and

shaded areas represent one standard deviation on either side of the mean. TUSV-intis evaluated at all data points. TUSV-ext and Canopy2 results were

feasible for only for subsets of the data points, as described in the accompanying text. Note that clone 0 is assigned a small frequency in (c) despite not

appearing in the TUSV-int phylogeny of (a) because it was inferred in one of the ten TUSV-int runs.

that helps in correctly resolving the tree topology and inferring

placement of all variants.

Real breast cancer patient samples
To demonstrate TUSV-int’s performance on a true example

of joint bulk DNA-seq and scRNA-seq data, we selected

one dataset from an ER/HER2-positive breast cancer patient

(BC03) among 11 patients studied by Chung et al. [2]. This

dataset included three bulk WES samples collected from the

primary tumor, metastatic lymph node, and blood. scRNA-

seq was performed on 92 single cells from the primary tumor

site and metastatic lymph nodes, and thus we included these

two samples in our analyses while omitting the blood sequence

for which no matched scRNA-seq is available. The bulk WES

coverage was 100x for the tumor and metastatic lymph node,

and 50x for the paired blood sample.

We preprocessed and called variants from the bulk WES

data using the Nfcore/sarek pipeline [9, 14], aligning paired-

end FASTQ files to the GRCh38 human reference genome.

Raw sequencing reads were then trimmed and quality-

controlled with fastp and FastQC, mapped using BWA-MEM2,

deduplicated with GATK MarkDuplicates, and the base quality

scores were recalibrated. Strelka2 [19], and CNVkit [38] were

then used to call SNVs and allele-specific CNVs, respectively.

We derived average allele-specific copy numbers from the

total copy numbers reported by CNVkit, using the Strelka2

genotypes. We preprocessed the scRNA-seq data in a similar

manner from the paired-end raw sequencing reads. Allele-

specific CNA calls were then performed using Numbat [13].

Since Chung et al. [2] generated the RNA sequencing data

using the SMARTer Ultra Low RNA Kit [2], we ran Numbat

with the ”SmartSeq” setting to accommodate the non-barcoded

single-cell RNA sequences.

After obtaining SNVs and CNAs from bulk WES and

allele-specific CNAs from scRNA-seq, we ran TUSV-int using

5 clones, 3 random restarts, 3 iterations, a time limit of

1500 seconds per iteration, 120 SNVs, and the corresponding

average bulk CNAs alongside scRNA-seq-derived CNAs. For
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comparison, we also ran TUSV-ext using the same settings.

We used the five scRNA-seq clones derived from Numbat, and

calculated the average segmental copy number within each

cluster to derive representative values as an input to TUSV-int.

Fig. 2 summarizes the results, comparing those between

TUSV-int and the DNA-only TUSV-ext. TUSV-int inferred

four clones (Fig. 2(a)) on 9 of its 10 runs, consistent with

the results reported by Canopy2 for an optimal run on patient

BC03’s data, and places the SNVs and SVs across all branches

of the phylogenetic tree (Figure 2 (a)). On the other hand,

TUSV-ext inferred five clones from the two samples (Fig. 2(b)),

although its clone 0 and clone 1 have low support (Figure 2

(b)). The consistency between TUSV-int and Canopy2 results

provides indirect support for the value of scRNA-seq to better

resolve clonal structure. Clone 2 in both the trees have common

mutations, however, they are placed differently in the two

trees. We would expect the single-cell data available to TUSV-

int to better identify which variants co-occur in the same

clone and correct an error in placement in TUSV-ext. This

leads to some notable changes in inference of mutation orders,

for example in the observation that SNV mutations hitting

the TP53 and Ras pathways (TP53BP1 and RASGRF2) and

immune-related CNA mutation in TOLLIP occur at a late

stage of progression following earlier mutations such as SNV

mutation of SOX5 and CNA mutation of CD53. This is in

contrast to the TUSV-ext result, which placed the mutations

in clones 2 and 3 all as early mutations on two parallel clonal

lineages. The distinction may be significant in interpreting

the meaning of the results. For example, mutations affecting

SOX5 and TP53BP1 can both promote proliferation in breast

cancers through very different mechanisms [24, 37]. The TUSV-

ext result would suggest these could be independently evolved

ways of driving a similar phenotype in distinct clones while the

improved TUSV-int result instead suggests they may be acting

synergistically in the same cell lineage. Such a distinction can

have important implications for identifying potential treatment

options or predicting mechanisms of therapy resistance.

The two methods also yield fairly different inferences of

clonal frequencies averaged across ten replicates (Fig. 2(c)

and Fig. 2(d)), although the differences in the inferred

clones themselves and their phylogenetic placements complicate

interpretation. We would expect the scRNA-seq data to give

TUSV-int a significant advantage in inferring accurate clonal

frequencies, likely in addition to correcting errors due to

misinferred clonal identities. TUSV-int and TUSV-ext both

infer clone 1 to be the dominant clone in the primary tumor,

although TUSV-int infers it to be substantially more diverged

from the rarer clone 3 from which it descends. Both also infer

clone 2 to be the dominant clone in the metastasis, making

the revised placement of the clone potentially important in

correctly characterizing the pathway to metastatic progression

in this patient. Note that clone 0 is assigned a small frequency

in the TUSV-int results despite not appearing in the TUSV-

int phylogeny of Fig. 2(a) because it was inferred in one of

the ten TUSV-int runs. There is little we can conclude about

mechanism from a single patient, but the results illustrate

how scRNA-seq data can lead to a more accurate model of

the clonal evolution process and clonal dynamics across stages

of progression, while taking account of how distinct types of

genetic variants contribute to both phenomena.

Discussion

We have developed a method, TUSV-int, for integrating

bulk DNA-seq and scRNA-seq data for clonal phylogenies

accommodating SNV, CNA, and SV variants. The work makes

use of similar strategies for combining bulk DNA-seq and

scRNA-seq to other recent works [17, 40] while handling a

broader combination of variant types than any competing

method. We accomplish this with a model built around an

ILP framework for phylogenetic inference on heterogeneous

data that offers comparatively easy extensibility to new data

sources, variant types, and features of the biology. Validation on

simulated data shows the advantages of combining both the two

sequencing types and the three variant types in producing more

accurate clonal deconvolution and lineage trees than do prior

methods. Application to real data reinforces the importance of

this combination in accurately resolving clonal evolution and

revealing how different forms of variation can each contribute

in parallel to the biology of cancer progression.

The work nonetheless leaves a number of avenues for

improvement. Our method currently does not account for

clones present in bulk DNA-seq but absent from single-cell

RNA sequencing, a question we leave for future exploration.

Improving computational efficiency is also a future concern, as

ILP can be a computationally costly technique, in some cases

necessitating subsampling of large data sets. ILP, despite its

power for efficiently solving hard optimization problems, also

has limitations compared to more common maximum likelihood

and Bayesian approaches to phylogenetics. For example,

combinatorial optimization methods like ILP provide less direct

support for considering uncertainty in model inferences. It

would have great value to the clonal lineage problems studied

here and to and the field more generally to find new methods

that can bring together the speed and versatility of ILP-like

combinatorial optimization with the more principled handling

of uncertainty of probabilistic models. There is also likely more

advantage to be gained by considering ways to incorporate

other data sources into the analysis, such as scDNA-seq, long-

read sequencing, or data from blood-based sequencing (“liquid

biopsy”). Finally, we have focused here primarily on methods

development and the question is largely unexplored yet what

the improved power of these methods can tell us about somatic

variation and clonal evolution in cancer progression as well as

in other diseases and normal aging.
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Fig. 2. Results on ER/HER2 positive breast cancer patient BC03’s data. (a) Clonal tree inferred by TUSV-int with edges annotated by single-nucleotide

variants (SNVs) and copy number alterations (CNAs). (b) Clonal tree inferred by TUSV-ext [11], also annotated with SNVs and CNAs. (c) Clonal

mixture fractions in tumor and metastatic lymph node tumor (LN Tumor) samples inferred by TUSV-int. (d) Clonal mixture fractions in tumor and

LN Tumor samples inferred by TUSV-ext. We ran TUSV-int and TUSV-ext with 120 subsampled SNVs, 3 iterations, 3 random restarts and 1500 second

per iteration.
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